
Accelerating Geospatial Machine Learning
SpaceNet delivers access to high-quality geospatial data for developers, researchers, and startups. Before SpaceNet, computer vision researchers had minimal options to obtain free, precision-labeled, and high-resolution satellite imagery. SpaceNet focuses on four open source key pillars: data, challenges, algorithms, and tools.
SpaceNet 5 Challenge
Automated Road Network Extraction, Routing, and Travel Time Estimation
Determining optimal routing paths in near real-time is at the heart of many humanitarian, civil, military, and commercial challenges. This statement is as true today as it was two years ago when the SpaceNet Partners announced the SpaceNet Challenge 3 focused on road network detection and routing. In a disaster response scenario, for example, pre-existing foundational maps are often rendered useless due to debris, flooding, or other obstructions. Satellite or aerial imagery often provides the first large-scale data in such scenarios, rendering such imagery attractive.
The SpaceNet 5 challenge sought to build upon the advances from SpaceNet 3 and test challenge participants to automatically extract road networks and routing information from satellite imagery, along with travel time estimates along all roadways, thereby permitting true optimal routing.
Las Vegas road network inference
colored by road speed
Algorithm Repository
Explore algorithms used to solve SpaceNet challenges. These currently include 13 open source Building footprint and Road Network extraction problems.